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Summaw 

The phenomenon of negative added mass is studied by considering the heave oscillations of a submerged vertical 
cylinder. Free-surface effects are shown to be important for the occurrence of negative added mass. Rapid 
changes in the added mass and damping, as functions of frequency of oscillation, often associated with this 
phenomenon are explained in terms of near-resonant standing waves above the body. 

1. Introduction 

In the linearised theory of water waves it is customary to (arbitrarily) decompose the 
hydrodynamic force on an oscillating body, due to its own motion, into components in 
phase with the acceleration and velocity of the body. These two components of the force 
are known respectively as the added-mass and damping coefficients for the body. Both 
are, in general, functions of the frequency of oscillation and, once known, allow prediction 
of the body motion in incident waves, provided the force on the fixed body in these waves 
is also known. 

The damping coefficient is a measure of the energy flux in the waves radiating away 
from the oscillating body (Newman [7], p. 296) and is necessarily non-negative. For a 
deeply submerged body, the added-mass coefficient can be interpreted as the fluid mass 
accelerated by the body and is positive. However, when free-surface effects are important 
this need not be so. Ogilvie [10] calculated added-mass coefficients for a submerged 
horizontal cylinder. He found that when the depth of submergence is sufficiently small, 
compared to the diameter of the cylinder, the added mass is negative over a range of 
frequencies. Added-mass and damping curves calculated using the reformulation of 
Ogilvie's method by Evans, Jeffrey, Salter and Taylor [2] are presented in Figs. 1 and 2. 
Note the rapid changes in both quantities associated with the occurrence of negative 
added mass. Experimental confirmation of the behaviour was made by Chung [1] for 
cylinders with both square and circular cross-section. Negative added mass has also been 
found for floating bodies that enclose a region of the free surface; for example the floating 
torus described by Newman [8], and the two half-immersed cylinders studied by Wang 
and Wahab [14] as a model for the motion of a catamaran hull. Similar behaviour was 
obtained when two submerged cylinders were considered. An approximate solution for 
two vertical spaced rolling plates in two dimensions given by Srokosz and Evans [11] also 
produced negative added-mass coefficients. 
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Figure 1. Added mass /~ as a function of wavenumber ka for a horizontal cylinder of radius a, depth of 
submergence h. 
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Figure 2. Damping A as a function of wavenumber ka for a horizontal cylinder of radius a, depth of submergence 

h. 



In multi-body problems the added mass takes the form of a matrix, reflecting the fact 
that the oscillations of one body can create a force on another. The variation with 
frequency of the off-diagonal terms is invariably oscillatory taking both positive and 
negative values. The diagonal terms also tend to be more oscillatory in their frequency 
variation than for a single body. See, for example, Matsui and Tamaki [6]. It is clear that a 
simple physical interpretation in terms of accelerated fluid mass is not appropriate in 
complicated multi-body problems where interaction effects are important. 

For a single oscillating body without an interior free surface, it appears that negative 
added mass occurs only when the body is submerged, and then only over a restricted 
range of frequencies. Thus Newman, Sortland and Vinje [9] have considered the vertical 
oscillations of a submerged two-dimensional rectangular cylinder and verified the negative 
added mass measured by Chung [1]. They presented results obtained using a numerical 
wave-source distribution method and also using an approximate technique involving the 
matching of a solution for the flow in the shallow region above the cylinder to a 
deep-water solution valid away from the cylinder. 

The present study seeks to extend the understanding of the phenomenon of negative 
added mass by considering the heave oscillations of a submerged vertical circular cylinder. 
The solution is by the method of matched eigenfunction expansions used in related 
problems by Yeung [15] and Thomas [13]. Negative added-mass coefficients are found to 
occur when the cylinder oscillates close to the free surface and, as in other examples, these 
are accompanied by rapid variations with frequency in both the added-mass and damping 
coefficients. An approximate solution valid for long waves in shallow water is used to help 
interpret the results. In Appendix I a relation due to Falnes (unpublished note) between 
the kinetic and potential energy of the fluid, and the added mass, is presented, whilst in 
Appendix II the Kramers-Kronig relations are used to confirm some of the trends 
apparent in the added-mass and damping curves as functions of frequency. 

2. Formulation 

A bottom-mounted vertical cylinder of height d and radius a in water of depth h 2 (d < h 2) 
makes time-harmonic oscillations in heave with radian frequency to and amplitude ~. The 
origin of the vertical z-axis is at the mean level of the top face of the cylinder so that the 
bottom is at z = - d  and the mean free-surface level at z = h  1 as in Fig. 3. Polar 
coordinates (r, 0) are chosen in the horizontal plane with the origin at the cylinder axis. 
Since the motion is axisymmetric there is no dependence on 0. 

z = h  1 

hi 

- - - J - - -  / 

z=O 

h2 

l / / I l l  i / / / / / / z = - d  

Figure 3. Definition sket'ch f6r bottom-mounted vertical cylinder. 
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Under the usual assumptions of linearised water-wave theory the velocity potential 
• (r, z, t) for the fluid motion may be written 

O =  Re(- i0)~ '¢(r ,  z )  e - i ' ' t  }. (2.1) 

so that the complex-valued spatial potential ~p(r, z) satisfies Laplace's equation within the 
fluid, 

x72•=0, - d < z ~ h  1, r>~a,  (2.2) 

O <~ z <~ h l ,  r <~ a ; 

the lineadsed free-surface conditions 

~t~ W 2 
- -  = - - ~ ,  z = h i ;  ( 2 . 3 )  
3z g 

the condition of no flow through the horizontal bottom 

3---~- = 0, z =  - d ,  r>~a; (2.4) 

and the conditions on the cylinder surface 

and 

0__¢_¢ = 1, z = 0, r ~< a; (2.5) 
az 

0_~_~ = 0 ,  - d ~< z ~< 0 ,  r = a .  ( 2 . 6 )  
Or 

In addition, only outgoing waves exist as r ---, ~ .  
The solution procedure follows that of Yeung [15] who treated the problem of a 

floating circular cylinder. The velocity potential is written in terms of appropriate 
eigenfunctions for the interior (0 ~< z ~< hi, r ~< a) and exterior ( -d~< z ~< h 1, r >/a) regions 
of the fluid domain and the two expansions matched on r = a. The solution of Laplace's 
equation for the interior region satisfying conditions (2.3) and (2.5) is 

o o  

O ° ) ( r ,  z )  = X" A h l ° ( a " r )  Zn(1)(g) + z -- h 1 + ~ 
n l r  / \ 0 )  2 

n - o  i o t a ,  a )  
(2.7) 

where 10 is the modified Bessel function of the first kind of order zero, the eigenvalues a ,  
are solutions of 

602 
- -  + a tan ah  I = 0, (2.8) 
g 



l l  

and the vertical eigenfunction is 

Z~l'(z) = N/1)-1/2 cos a . z  (2.9) 

with the normalising factor 

N~ 1)-- 1 + 2~nh I . 

The first eigenvalue ao( = - i k l )  is pure imaginary while the remainder are real and 
positive and taken in order of increasing magnitude. The solution for the exterior region 
satisfying condition (2.4) is 

ep(2)(r, z)  = ~ Bn K°( f lnr )  Z~(2)(z) (2.11) 
,=0 fl" Ko(f lna)  

where K o is the modified Bessel function of the second kind of order zero and the 
eigenvalues fin(rio = - ik2) satisfy 

O,) 2 
- -  + fl tan flh 2 = 0 (2.12) g 

and 

Z~2)(z) = Nn t2)-1/2 cos fl ,(z + hi) (2,13) 

where 

1 (  sin 2flnh2 ) 2firth2 N~2) = ~ 1 +  . (2.14) 

Continuity of fluid pressure and vertical velocity across r = a require that the expressions 
(2.7) and (2.11) for q,o) and t~ (2) be matched on r = a, 0 ~ z ~ h 1. If the resulting equation 
is multiplied throughout by Z~l)(z) and integrated over (0, hi), the following result is 
obtained: 

hE o¢ 
A ,  = -~, ~_, B,.TmC,, * - A~ (2.15) 

1 m~O 

where 

1 ro(t .a) 
T .  = fl,,,h2 K; ( f l , , a )  ' (2.16) 

1 (h , z (2 ) t z~ZO) t z~dz ,  C m k = h l J o  m ~ , k ~ , (2.17) 
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and 

= 1  fh,{ g )Z(k,)(z)dz. A~ h2 Jo k z -  h 1+-~ (2.18)' 

Similarly the continuity of the horizontal fluid velocity across r = a requires the matching 
of O~°)/Or and ae~2)/Or on r = a, 0 ~< z ~< h v If the resulting equation and the expanded 
form of Eqn. (2.6) are multiplied by Z):)(z), and then integrated over their respective 
ranges of validity the result is 

where 

A,S, Cj, = ~ Bj (2.19) 
n ~ 0  

l~(a .a)  
S, = °t, hl lo( ot, a) " 

Eliminating B,, from Eqn. (2.1.5) using Eqn. (2.19) gives an infinite system of simultaneous 
equations for the A',s, viz. 

A k - ~ A.Dk. = -A'~ (2.20) 
n ~ O  

where 

o o  

D,. = s. E r~cm,c~,. (2.21) 
m ~ O  

Now the vertical hydrodynamic force on the top face (S) of the cylinder is 

= - A U - B U ,  say (2.22) 

where 

u(t) = R e ( -  ,,~¢ e - ' ° ' )  

is the vertical velocity of the cylinder and A and B, dependent on the frequency of 
oscillation, are the added-mass and damping coefficients describing the components of the 
force in phase with the acceleration and velocity respectively. Suitable non-dimensional 
coefficients may be defined by 

A -- M/~, B = Mo~)~ (2.23) 



where M = p~ra 3 so that, after substitution for the interior potential, Eqn. (2.7), 

~ + i X  = h i  1 -  g - 2  A~S~ 
a = N~Ol/2(a~a) 2" 
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(2.24) 

3. Approximate solution for shallow water 

Following Yeung [15] we define depth-averaged velocity potentials 

1 [h ,~,m("  
~1)( r ) =-h-~l Jo T , . ,  z )dz  

and 

(3.1) 

and 

1 o f og o. 
r ~rlr---~r +gh  2 (3.4) 

In deriving Eqns. (3.3) and (3.4), it has been assumed that ~(i)(r, hi) may be replaced by 
~ ° ( r )  (i = 1, 2) so that the flow varies little throughout the depth. This is the shallow-water 
approximation for long waves. 

Equation (3.3) has the solution 

~a)(r )  = CJo(klr  ) + g (3.5) 
O) 2 

and Eqn. (3.4) the solution 

~2) ( r )  = D H o ( k z r  ), (3.6) 

where 

O3 2 
- -  = kEha = kEh2 (3.7) 
g 

and Jn and Hn are respectively the Bessel function and the Hankel function of the first 
kind of order n. The solution ~1) represents an axisymmetric standing wave above the 

If the boundary conditions (2.3)-(2.6) are used, it follows that these potentials may be 
shown to satisfy 

1 0 [ a,~ ~1) = 1  (3.3) 
r ~ r l r - - ~ r  )+~h21 ~1' hi 
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heaving mount while if(2) is an axisymmetric progressive wave radiating energy away from 
the mount. The complex constants C and D are determined by demanding that the 
velocity potentials and the total flow are continuous at r = a. This gives 

c=(k~hl)- lHa(ekla)  
F(k,a) (3.8) 

and 

D=e(k2hi)- lJ l (k la)  
F(k~a) ' (3.9) 

where 

F( k~a ) = eJ~ ( k~a ) Ho ( ek~a ) - Jo ( k~a ) Hl ( ek~a ) (3.10) 

and 

k 2 ( h l )  1/2 
e =~-1 = ~ (3.11) 

The added-mass and damping coefficients follow from Eqn. (2.22) and, with the non-di- 
mensionalisation of Eqns. (2.23), are given by 

( 2Hl(ek,a)Jl(k,a) ) 
# + iX o~zag 1 + : ~ a - )  " (3.12) 

4. Results and discussion 

To solve the system of Eqns. (2.20) it must be truncated at a finite value N~ and similarly 
the summation in Eqn. (2.21) requires truncation at some value N 2. The values N 1 and N 2 
correspond to the number of real eigenvalues used in the interior and exterior regions. 
Detailed examination of a number of trial calculations indicated that a large value of N 2, 
but only a moderate value of N 1, is required. In all of these trial calculations the added 
mass and damping were determined to within 2% by taking N 1 = 10 and N 2 = 50. 
Convergence was most rapid when either, or both, of hl/h 2 and a/h 2 were large (i.e. 
h~/h2 >1 0.5, a/h 2 >1 1.0). All the calculations now presented were made with N 1 = 20, 
N 2 = 60. 

Figures 4 and 5 give respectively the added-mass and damping coefficients for a 
cylinder of fixed radius a/h 2 = 0.1 at various depths of submergence. These curves 
resemble those presented by Figs. 1 and 2. For large h~/h z there is little variation in/~ and 
X with frequency, but with decreasing hl/h 2 the curves become more peaked and when the 
mount is sufficiently close to the surface the added mass becomes negative over a range of 
frequencies. As an extreme example of this Fig. 6 displays added-mass and damping 
curves for a/h z = 5.0, hl/h 2 = 0.05. 



15 V o l h  z = 01 

15 

10~ / \ ht/h2=O 05 

0.5 

050 

1/h2:010 

3 

_0,5 ~- 

Figure 4. Added mass # as a function of exterior wavenumber k2a for a bottom-mounted vertical cylinder of 

radius a / h  2 = 0 . 1 .  
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Figure 5. Damping ;k as a function of exterior wavenumber k2a for a bottom-mounted vertical cylinder of radius 

a / h  E = 0.1. 
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Figure 6. Added mass #, modified added mass g and damping ?~ as function of interior wavenumber k i a  for a 
bot tom-mounted vertical of radius a / h  2 = 5.0 and depth of submergence h l / h  2 = 0.05. The numbers  at the 
extremeties indicate the approximate height of  each maximum or minimum. The descending portion of the 
added-mass curve around k l a  = 2 has been omitted. 

Before considering these results further the contribution of the term 

z - h 1  + g-~- t.~ 2 

to the interior potential (Eqn. (2.7)) will be discussed. This represents the rigid-body 
motion of the fluid above the mount. For this motion alone the added-mass coefficient is 
given by 

hi g (4.1) 
P a 602a ' 
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(cf. Eqns. (2.24) and (3.12)) while the damping coefficient is identically zero (there is no 
flow into the outer region to generate waves). It should be noted that for the bottom- 
mounted cylinder considered here there is a contribution to the force from the fluctuating 
hydrostatic pressure (relative to the mean surface level). The corresponding force coeffi- 
cient is equal and opposite to the term - g / ~ 2 a  in ft. However, for a body totally 
surrounded by fluid, as would usually be the case, there would be a cancelling hydrostatic 
force on the base and so, for the purposes of this discussion, hydrostatic effects will not be 
considered. 

From the numerical results, it has been observed that for high frequencies (kla >> 1) 
and small depths of submergence equation (4.1) gives the dominant contribution to the 
added mass. Indeed as o~2a/g ~ oo, t.t tends to the constant value hl /a .  At low frequencies 
the contribution to the added mass is dominated by the term -g/o~2a, but, in general, the 
added mass does not become negative because of the wave motion contribution. However, 
for sufficiently small depths of submergence h 1, the added mass, as given by Eqn. (4.1), 
will become negative at frequencies where wave effects are negligible. For this reason a 
second added-mass curve, with the rigid-body-motion contribution taken out and denoted 
by/~, is drawn in Fig. 6. In this way the effects of the resonant wave motion may be 
isolated. 

Falnes (unpublished note) has related the added mass to the energy of the fluid motion. 
For a body oscillating in a single mode of motion with velocity amplitude U, the added 
mass A (see Eqn. 2.22)) satisfies 

T - V = 1A U 2, (4.2) 

where T and V are respectively the kinetic and potential energies of the total fluid motion 
averaged over a period. A proof of this result is given in Appendix I. At large depths of 
submergence (so that the effect of the free surface, and hence V, is negligible) the added 
mass A may be interpreted as the mass of fluid accelerated by the motion of the body 
(hence the origin of the term). For a body close to the free surface no simple interpretation 
of added mass has previously been available. As an illustration of Eqn. (4.2) consider the 
rigid-body motion of the fluid mass above the heaving cylindrical mount. The mean 
kinetic energy of the fluid motion is 

T = ¼p~a2hlU 2 (4.3) 

and the mean potential energy is 

V= ¼p~a 2 g---~- U 2. (4.4) ~2 

Substitution of these expressions into Eqn. (4.2) and appropriate non-dimensionalisation 
recovers Eqn. (4.1). As the depth of submergence h I decreases so does T because of the 
reduced mass of fluid above the mount. However, V depends only on the motion of the 
free surface and is independent of h 1, so that negative added mass occurs when the body is 
oscillating sufficiently close to the free surface. 

From Eqn. (4.2), zeros in the added mass will occur whenever the mean kinetic and 
potential energies are equal. In Fig. 6 zeros in ~ occur at values of kla close to the zeros of 
Jl(k la)  (the nth zero of J,,,(kla) is denoted by Jm.,). Examination of the shallow-water 
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solution, Eqn. (3.5), shows that at these frequencies c}~l)//Or is zero and hence there is no 
flow across the rim of the cylinder into the exterior region. The wave motion (i.e. 
excluding the rigid body motion) consists entirely of a standing wave confined to the top 
of the mount; it is a simple calculation to show that the mean kinetic and potential 
energies of such a motion are equal, hence the zero in ~. There is no wave generation in 
the exterior region and therefore the damping coefficient X is also zero at these frequen- 
cies. 

The very sharp peaks in the curves displayed in Fig. 6 suggest that there is a resonant 
motion at certain frequencies. The shallow-water solution for the added mass and 
damping (Eqn. (3.12)) shows that resonance will occur at the zeros of F(kla ). The zeros of 
this function have been examined in detail by Longuet-Higgins [5] and Summerfield [12]. 
There are no real zeros for non-zero E, but for small E the complex zeros each have a small 
imaginary part, and rapid variations in the solution, as a function of k:a, can be expected 
near the frequencies given by the real part. These frequencies occur near the zeros of 
Jo(kla). Away from the resonant frequencies, but still for small e, the expression (3.12) 
reduces to 

/*+iX g 1 (4.5) 
to2a klaJo ( kla ) • 

From Eqn. (4.5) it is apparent that there are zeros in the modified added mass/Y at the 
zeros of Jl(kla) with negative values occurring at frequencies in a range below each of the 
zeros. It can also be seen that-the damping is close to zero away from the resonant 
frequencies. The full shallow-water expression, Eqn. (3.12), gives results very close to the 
curves in Fig. 6. 

At the resonant frequencies of the shallow-water solution (kla =Jo,,,), the nodes of the 
dominant standing-wave component of the complete interior potential (Eqn. (2.7)) are 
above the rim of the cylinder and there is a non-zero flow velocity into the outer region. 
The resonant behaviour therefore gives very strong wave generation in the outer region, 
hence the sharp peaks in the damping curve near the resonant frequencies. From Fig. 6 it 
can be seen that there is a zero of ~ associated with each maximum in X. The 
shallow-water solution (3.12) shows that they do not coincide, except as e ~ 0 when they 
both occur at the resonant wavenumbers Jo,,,. Each maximum in X is accompanied by a 
rapid decrease in pt. In Appendix II one of the Kramers-Kronig relations is used to 
demonstrate that it is generally true that any sharp isolated maximum in X must be 
accompanied by such a rapid drop in ~ as the frequency increases. 

5. Conclusion 

The occurrence of negative added mass has been investigated for the heave oscillations of 
a submerged cylindrical mount. In common with previous work for other submerged 
bodies, the added mass may become negative when the depth of submergence is small and 
free-surface effects are important. This is reflected in a new relation (due to Falnes) 
between the added mass and the mean kinetic and potential energies of the fluid motion 
(Eqn. (4.2)). At large depths of submergence the mean potential energy of the motion is 
negligible and the added mass is necessarily positive. At small depths of submergence the 
oscillations of the free surface are such that the mean potential energy can exceed the 
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mean kinetic energy resulting in negative added mass. For these small submergences 
near-resonant standing waves may occur above the mount accounting for the rapid 
changes observed in both added mass and damping. 
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Appendix I 

A relation between the added mass and the energy of the fluid motion due to Falnes 
(unpublished note) 

Consider a body oscillating in a single mode of motion with velocity amplitude U and 
velocity potential • = U~. The added mass and damping will then be given by 

34,* 
A + iB = pffsfo-gg#dS (AI.1) 

so that, as in Falnes [3], 

a 
A = ~ P f f  ~n (q~*~) dS, (A1.2) 

S,~ 

io3p [ [ [ q aq,* . . a q , ) d S .  (11.3/ 
B 2 JJs,~ an -e? -~n 

Here S o is the body surface, n is the normal to the surface directed out of the fluid and * 
indicates complex conjugate. 

Application of Green's theorem to q~ and q,* and the use of (A1.3) gives 

• aq,* 
= , offs=+ dS, (A1.4) 

where the integration is carried out over a surface S comprising S B, the free surface S F, the 
horizontal bottom and an enclosing cylinder S~ in the far field. 

The mean potential energy of the fluid motion over a period is 

v= f fs,( ¼pglnl2 )dS 

1 °32 ffs =gp  g U  2 (~q~*ldS, (A1.5) 
F 
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where ~/ is the displacement of the free surface from the mean level. The mean kinetic 
energy is 

r = V~b*)dT (A1.6) 

where ~" denotes the fluid volume. By the divergence theorem 

T = ~pu2ffs~. v $ * d S  

1 2 a~* = zou ( ffsj,_ff_dS + ,: aO* 

Combining Eqns. (AI.I), (AI.4), (AI.5) and (AI.7) gives 

T - V = ~A U 2. (A1.8) 

The generalisation of this result for N modes of motion is 

T - V = ¼ E A , j U ~ U j *  (A1.9) 
i , j  

where U~ is the complex velocity amplitude of the i th mode. 

Appendix II 

The Kramers-Kronig relation for the added mass in terms of the damping coefficients is 

tt(p ) _ p ( ~ )  = _1 ~ ¢  X(z)dz___ , (A2.1) 
JO Z - - P  

where p = k a  (see Kotik and Mangulis [4]). Suppose the damping ~, has a sharp maximum 
at p = 1'o. Close to this maximum, at p = v o + e where [e[ is small, 

/~(~o + e)_/~(oo) = 1 ~o °o )~(z) 
z - (v o + e) dz 

1 ~ XO, 0 + Z)  
= ~ / - ' , o  Z ' - ~  dZ.  (A2.2) 

The major contribution to the integral will be from around Z = 0. We therefore replace 
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the range of integration by a suitable finite range (-81, 82)  , 81, 82 )" 0 such that lel << 81, 
82 . Now 

x( 0 + z )  - x( 0) + zx'( 0) +  z2x"(v0) + . . .  

= X(Vo)  + O ( Z  2) (A2.3)  

because  M y )  has a m a x i m u m  at v = u o. Equa t ion  (A2.2) can therefore  be  app rox ima ted  by  

/ X ( V o + e ) _ / ~ ( o o ) _  X(f_o) ~ 2  d Z  (A2.4)  

Carrying out the integration in Eqn. (A2.4) and expanding in powers of e gives 

( 32 E(31 "}- 32) ) (A2.5)  
/~(Uo) + e / ~ ' ( V o ) - / ~ ( ~ )  - X(v°)Ir l n s ,  3,32 

and  the s lope of the a d d e d  mass  curve at v = Vo is therefore  

h(po) 81 + 82 
t~'(v°) = ~r 8,32 < 0. (A2.6)  

The  sharper  the peak  in the d a m p i n g  curve then the smal ler  the values of 81, 82 required.  
Hence,  a large sharp m a x i m u m  in the d a m p i n g  will be accompan ied  by  a very rap id  d rop  
in the a d d e d  mass, as a funct ion of frequency.  
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